
CME 305: Discrete Mathematics and Algorithms
Instructor: Professor Aaron Sidford (sidford@stanford.edu)

January 30, 2018

Lecture 7 - Algebraic Methods for Matching1

In this lecture we move from unit 1 on combinatorial methods for combinatorial problems to unit 2 on

algebraic, spectral, and random walk based methods. The main problem we consider this lecture is that of

computing perfect matching in graphs (both bipartite and general).

1 Perfect Matchings

We begin by recalling the de�nition of matching and perfect matching. Given a graph G = (V,E) we call a

subset of the edges F ⊆ E a matching if every vertex v in the graph induced by F has degree at most 1, i.e.

it has at most one neighbor in the graph induced by F or equivalently is incident to at most one edge in F .

Formally we have the following

De�nition 1 (Matching). For undirected G = (V,E) a subset of the edges F ⊆ E is a matching if and only

if for all v ∈ V it is the case that |{e ∈ F | v ∈ F}| ≤ 1.

For every edge {i, j} ∈M for matching M we say that vertex i is matched to vertex j. We call a matching

perfect if every vertex is incident to exactly one edge, i.e. every vertex is matched in the matching.

The main problem we consider in this lecture is how to compute a perfect matching in a graph. We'll focus

on obtaining algorithms whose running times depend on n = |V | the number of vertices in the graph, i.e.

we will not try to obtain a better running time dependence based on the sparsity, i.e. the number of edges

m = |E| in the graph.

1.1 From Perfect Matchings to Maximum Matching

Before we discuss computing perfect matchings, we note that computing a perfect matching in a graph (or

certifying that it does not have one) is nearly as hard as computing a maximum matching in a graph, i.e.

a matching with the largest cardinality or number of edges in it. Note that the other direction is trivial.

A graph has a perfect matching if and only if the maximum matching is perfect and thus computing a

maximum matching is clearly harder. The following lemma shows that its asymptotic complexity though (in

terms of the number of vertices in the graph) is nearly the same.

Lemma 2. Given an algorithm which computes perfect matchings in n-node graphs in O(T (n)) time we can

produce an algorithm which computes a maximum matching in a graph in O(T (2n) log n).2

Proof. Let G = (V,E) be a graph with n-nodes for which we wish to compute a perfect matching. Let m∗
be the size of the maximum matching in G, i.e. the number of edges in it. Now every edge in a matching

matches two unique vertices and therefore the number of unmatched vertices in G is n− 2m∗.

Let's consider modifying the graph to match these vertices. Let Gk be the graph we start with G and add

vertices u1, ..., uk and add an edge {v, ui} for all v ∈ G and i ∈ [k] and add an edge {ui, uj} for all i 6= j ∈ [k].

1These lecture notes are a work in progress and there may be typos, awkward language, omitted proof details, etc. Moreover,

content from lectures might be missing. These notes are intended to converge to a polished superset of the material covered in

class so if you would like anything clari�ed, please do not hesitate to post to Piazza and ask.
2Here we are assuming that running times, e.g. T (n) always monotonically increase with n.

CME 305: Discrete Mathematics and Algorithms - Lecture 7 2

Now if n + k is even and k ≥ n − 2m∗ then Gk has perfect matching. To see this simply take a maximum

matching in G, match the n− 2m∗ vertices that are not matched to the vertices ui and for any extra ui that

are un-matched, match them arbitrarily using the {ui, uj} edges.

On the other hand, if we �nd a matching of size α in Gk then at most k of these edges are incident to the

ui and therefore this yields a matching of size at least α− k in G. Consequently, since when n+ k is even a

perfect matching would have (n+k)/2 edges we see that a perfect matching in Gk would yield a matching of

size at least n+k
2 −k = n−k

2 which can be at most m∗. Therefore, in order for Gk to have a perfect matching
n−k
2 ≤ m∗ and when, this does not hold, i.e. k < n− 2m∗, we see that Gk does not have a perfect matching.

Consequently, we can perform binary search on k in {0, ..., n} where n+ k is even and �nd the smallest such

k for which Gk has a perfect matching. As we have argued, this value of k will be n− 2m∗ and the edges in

this perfect matching in G will be of size n+n−2m∗
2 − (n − 2m∗) = m∗, i.e. it will be maximum. Note that

the total running time of this procedure is the time to compute O(log n) perfect matchings on graphs with

at most n+ k ≤ 2n vertices.

It is not hard to see that a similar reduction can be derived in the case when G is bipartite.

1.2 Cut Characterizations of Matchings

Before we derive our algorithm for computing perfect matchings, here we have a small digression on when

exactly a graph has a perfect matching. We will not strictly speaking need this result for our algorithms,

but it is an important result in combinatorics and a discussion of perfect matchings would not be complete

without it. Moreover, this characterization will highlight again the di�erence between perfect matchings in

bipartite graphs and in general graphs.

In the following lemma we show that we can characterize when a bipartite graph has a perfect matching

in terms of how many vertex neighbors a set has. Intuitively it says that a bipartite graph has a perfect

matching if when we take any subset of vertices on one side, it is incident to at least as many vertices as the

size of that set.

Before we give the lemma a little formalism is required. For graph G = (V,E) and S ⊆ V we let NG(S)
def
=

{v ∈ V | ∃u ∈ S, {u, v} ∈ E} denote the neighbors of S in G, i.e. the number of vertices connected to a

vertex in S by an edge. We will drop the subscript G when it is clear from context. Furthermore, we say a

graph G = (V,E) is bipartite with bipartition V = L∪R if it is the case that L∩R = ∅ and for all {i, j} ∈ E
we have i ∈ L and j ∈ R or i ∈ R and j ∈ L.

Theorem 3 (Hall's Marriage Theorem). If G = (V,E) is bipartite with bipartition V = L ∪ R then G has

a perfect matching if and only if |L| = |R| and for all S ⊆ L it is the case that |N(S)| ≥ |S|.

Proof. Suppose G has a perfect matching. Then clearly L = R since in a perfect matching every vertex on

the left is matched with a unique vertex on the right and vice versa. Furthermore, for any set S ⊆ L in a

perfect matching each vertex of S is matched with a unique vertex on the right. Consequently, in a perfect

matching |N(S)| = |S| and since this graph has a perfect matching plus additional edges |S| ≤ |N(S)|.

On the other hand suppose that |L| = |R| and |N(S)| ≥ |S| for all S ⊆ L. Add a vertex s and a vertex t to

G, and make every edge {u, v} ∈ E with u ∈ L and v ∈ R a directed edge with in�nite capacity. Furthermore

add an edge (s, v) for all v ∈ L with capacity 1 and add an edge (v, t) for all v ∈ R with capacity 1. As

we saw last lecture, a maximum s-t �ow in this graph consists of length 3 s-t paths that induce matchings

and the maximum �ow value is n = |L| = |R| if and only if the graph has a perfect matching. Now consider

a minimum s-t cut C in this graph we can write C = {s} ∪ A ∪ B for some A ⊆ L and B ⊆ R. Now

CME 305: Discrete Mathematics and Algorithms - Lecture 7 3

the edges cut by C are the edges from s to L \ A, the edges from A to R \ B, and the edges from B to t.

However, since this is the minimum cut it should have �nite capacity and therefore there are no edges from

A to R \B and u(C) = |L \A|+ |B|. However, since this means that all edges from A go to B we have that

|B| ≥ |N(A)| ≥ |A| and since |L \ A| = n − |A| we have u(C) ≥ n and therefore the minimum cut value is

n, so the maximum �ow value is n, and G has a perfect matching.

Unfortunately the same lemma does not extend directly to characterizing perfect matchings in general

graphs. We could try a condition like, for all sets S ⊆ V with |S| ≤ |V |/2 we have |N(S)| ≥ |S| but
the graph consisting of 2 independent cycles of length 3 meets this condition, yet does not have a perfect

matching. Since if S is one of the cycles then all 3 vertices inside it are neighbors, and if S cuts one of

the cycles then at least two vertices are neighbors. This de�nition could be further restricted by asking for

|S \N(S)| ≥ |S| but unfortunately, even a perfect matching does not meet this criterion.

Dealing with odd cycles causes much di�culty for computing perfect matchings in general graphs and

it can actually be shown that there is no way to model the problem through a small, polynomial-sized

linear program under reasonable assumptions. However, there is a characterization of when general graphs

have perfect matchings that takes into account odd components more directly. We end this section with its

statement, but will not prove it here. Instead we will consider a di�erent set of algorithms (less combinatorial

/ cut based) to compute them.

Theorem 4 (Tutte's Theorem). An undirected graph G (which is not necessarily bipartite) has a perfect

matching if and only if for all U ⊆ V the graph induced on V \ U has at most |U | components with an odd

number of vertices.

2 Perfect Matchings in Bipartite Graphs (Algebraically)

Here we take a di�erent approach to computing perfect matchings. Let's start with the case of a bipartite

graph G = (V,E) with bipartition V = L ∪R. We assume |L| = |R| = n, since otherwise G does not have a

perfect matching, and let L = {l1, ..., ln} and R = {r1, ..., rn}.

Now one nice way to think about perfect matchings in G is in terms of permutations, i.e. orderings of

[n]. If we have a perfect matching M ⊆ E then for all i ∈ [n] the vertex li is matched with a unique rj .

Consequently, a perfect matching is simply a bijective mapping π : [n] → [n] with {li, rπ(i)} ∈ E for all

i ∈ [n]. Formally, we let Pn denote the set of permutations which we think of as mapping π ∈ Pn from [n] to

[n] with the property that π(i) = π(j) ⇔ i = j. With this notation we can restate whether or not a graph

has a perfect matching as follows

Claim 5. Bipartite G = (V,E) with bipartition V = L ∪ R and L = {l1, ..., ln} and R = {r1, ..., rn} has a
perfect matching if and only if there is π ∈ Pn with {li, rπ(i)} ∈ E for all i ∈ [n].

Consequently, to check whether or not a graph has a perfect matching, we simply need to optimize over the

space of permutations. While there are precisely n! permutations, i.e. this would take exponential time to

check compactly, we can try to leverage the fact that there are linear algebraic primitives that can optimize

over permutations more e�ciently. In particular, we know that the determinant of a matrix is a natural

operation for aggregating information about permutations as for any matrix A ∈ Fn×n, where here F is a

�eld (though it su�ces to consider F = R throughout this note), we have

det(A) =
∑
π∈Pn

(−1)sgn(π)A1,π(1)A2,π(2), ...,An,π(n)

where sgn(π) is the signature or parity of π, i.e. the parity of |x < y ∈ [n]|π(x) > y|, or the parity of the

number of transpositions from the identity permutation to make π.

CME 305: Discrete Mathematics and Algorithms - Lecture 7 4

Thus, the determinant of a matrix is a natural way to aggregate information about permutations on a matrix.

This suggests a natural way to use the determinant to check if a graph has a perfect matching. We simply

make a matrix A(G) where we set entry A(G)ij to be non-zero if and only if {li, rj} ∈ E. If we do this,

then the only non-zero terms in the sum will be those corresponding to perfect matchings. However, there

could be many such summands and therefore to �gure out what to set the entries to, we will simply make

the non-zero entries of A(G) variables for now and compute the determinant symbolically. Formally, we

introduce variables xij ∈ F for all i, j ∈ [n] and some �eld F and de�ne

A(G)ij =

{
xi,j if (li, rj) ∈ E
0 otherwise

with this we have that

det (A(G)) =
∑
π∈Pn

(−1)sgn(π)A(G)1,π(1)A(G)2,π(2), ...,A(G)n,π(n)

=
∑

π∈Pn|π corresponds to a perfect matching in G

(−1)sgn(π)x1,π(1)x2,π(2) · · ·xn,π(n)

Consequently, det (A(G)) is simply a multivariate polynomial in the xij with terms corresponding to perfect

matchings. To reason about this we introduce a little terminology regarding multivariate functions.

De�nition 6 (Multivariate Polynomials). We say that f ∈ F[x1, ..., xn] is a multivariate polynomial over

�eld F if for some αi1,...in ∈ F and all x1, ...xn ∈ F we have

f(x1, ..., xn) =
∑

i1,i2,...,in∈Z≥0

αi1,i2,...,inx
i1
1 x

i2
2 · · ·xinn .

We call the maximum value of i1 + i2 + · · ·+ in for which αi1,i2,...,in 6= 0 the degree of f denoted deg(f). We

de�ne the degree of the 0 polynomial to be 0 as well. We say two polynomials are equal if all the terms are

the same.

With this terminology in place we see that we have established another nice characterization of perfect

matchings in bipartite graphs.

Lemma 7. For bipartite G = (V,E) we have det(A(G)) ∈ F[x11, ..., xnn] is a multivariate degree at most n

polynomial with det(A(G)) 6= 0 if and only if G contains a perfect matching.

Proof. We have already argued that

det (A(G)) =
∑

π∈Pn|π corresponds to a perfect matching in G

(−1)sgn(π)x1,π(1)x2,π(2) · · ·xn,π(n) .

Consequently it is a degree at most n polynomial by de�nition (since only n of the xij appear in a term).

Furthermore, we see that for a particular π ∈ Pn the term with variables x1,π(1)x2,π(2) · · ·xn,π(n) only

appears for that particular π. Consequently, there is no interaction between these terms and by de�nition

of a polynomial being non-zero it is non-zero if and only if it has a perfect matching.

With this established, all that remains is to show how to compute det(A(G)). Unfortunately, even just

writing down the polynomial det(A(G)) can be prohibitively expensive. If G has every edge possible, i.e.

it is the bipartite complete graph between two vertex sets of size n, then every permutation corresponds to

a perfect matching and det(A(G)) is a polynomial with n!, i.e. an exponential, number of terms. In this

case, symbolically as a polynomial, we are not really saying much, we are just enumerating permutations a

di�erent way.

CME 305: Discrete Mathematics and Algorithms - Lecture 7 5

So how can we leverage this characterization? One idea is to actually pick an assignment of values to the

xij , i.e. pick some random rij ∈ F for all i, j ∈ [n]. Note that evaluating the multivariate polynomial

det(A(G)) for an assignment of xij = rij for some values rij is the same as computing det(A(G)[{rij}])
where A(G)[{rij}] is the matrix where xij is set to be equal to rij . Thus we can evaluate this multivariate

polynomial in the same time that it takes to compute the determinant of a matrix with explicit values. As

we will see next class, this can be done in time polynomial in n.

Now for all assignments xij = rij it is the case that ifG does not have a perfect matching that det(A(G)[{rij}]) =
0 as the polynomial itself is 0. However, what is the probability that det(A(G)[{rij}] = 0 when the poly-

nomial is nonzero, i.e. the graph has a perfect matching. The following lemma, which we will prove next

lecture, shows that this probability can be made fairly small.

Lemma 8 (Schwartz Zippel Lemma). Let f ∈ F[x1, ..., xn] be a non-zero polynomial of degree d over �eld

F. Let S be a �nite subset of F and suppose r1, ..., rn are chosen independently at random from S then

Pr [f(r1, r2, ..., rn) = 0] ≤ d

|S|
.

Consequently, if we pick rij ∈ {1, 2, ..., O(nc)} then with high probability if our bipartite graph has a

perfect matching then det(A(G))[{rij}] 6= 0 whereas if the graph does not have a perfect matching then

det(A(G))[{rij}] = 0. Consequently, by computing determinants of integer valued matrices (which we can

do in polynomial time), we can test whether or not a bipartite graph has a perfect matching in polynomial

time. In the next lecture we show how to use this to obtain a polynomial time algorithm for computing a

bipartite matching in full.

3 Perfect Matchings in General Graphs

In the remainder of this lecture we show that similar techniques can be used to test whether or not a general

graph has a perfect matching. For the remainder of this section let G = (V,E) be a general graph and let

V = {1, ..., n} be its vertices. As before, we will draw a correspondence between permutations π ∈ Pn and

perfect matchings in G and then show how to use the determinant of a matrix to check whether or not there

is a permutation corresponding to a perfect matching.

Our correspondence is fairly natural. First, for π ∈ Pn with think of π(i) as suggesting which vertex vertex

vi should be matched to. For π ∈ Pn let Gπ be a directed graph associated with π de�ned as follows: G has

vertices {1, ..., n} and an edge (i, π(i)) for all i ∈ [n]. For this section, I am going to overload notation a little

and say π ∈ E or Gπ ∈ G if it is the case that {vi, vπ(i)} ∈ E for all i ∈ [n] or equivalently, the undirected

graph associated with Gπ is a subgraph of G. With this notation we'll say that π corresponds to a perfect

matching if Gπ ∈ G and Gπ has a perfect matching.

So when does Gπ have a perfect matching? Note that every vertex in Gπ has out-degree one, i.e. one edge

leaving it, and in-degree one, i.e. one edge pointing to it. This follows from the fact that π is a permutation

and π(i) = j for a unique i. Consequently, Gπ is simply a collection of disjoint cycles. To see this, note that

if we pick a vertex and keep following edges, we will never encounter a vertex twice, except for the vertex we

started at (since in-degrees are one). However, clearly a cycle has a perfect matching if and only if its length

is even (as edges in a perfect matching would have to alternate). Putting this together we get the following:

Lemma 9. Graph G = (V,E) with V = {1, ..., n} has a perfect matching if and only if some πcorresponds

to a perfect matching, which happens if and only if π ∈ E and all cycles in Gπ have even length.

Proof. We have shown the equivalence of π corresponding to a perfect matching and π ∈ E with all cycles in

Gπ having even length. Furthermore, we have shown that when this holds, G has a perfect matching. Lastly,

CME 305: Discrete Mathematics and Algorithms - Lecture 7 6

if G has perfect matching {v1, v2}, {v3, v4}, ... note that the permutation where for all odd i, π(vi) = vi+1

and for all even i, π(vi) = vi−1.

Note also, that given π corresponding to a perfect matching, we can easily �nd one in nearly linear time. To

use this, we simply need to give a matrix where the determinant aggregates over permutations in the graph

with even length cycles. We show how to do this in the following lemma.

Lemma 10. G = (V,E) with vertices V = {1, ..., n} has a perfect matching if and only if for variables xij
for ij ∈ [n] the Tutte matrix T (G) de�ned for all i, j ∈ [n] by3

T (G)ij =


0 if {i, j} /∈ E
xij if i < j and {vi, vj} ∈ E
−xji if i > j and {vi, vj} ∈ E

satis�es det(T (G)) 6= 0.

Proof. As before we have that

det (T (G)) =
∑
π∈Pn

(−1)sgn(π)T (G)1,π(1),T (G)2,π(2) · · ·T (G)n,π(n)

=
∑

π∈Pn,π∈E
(−1)sgn(π)(±x1,π(1))(±x2,π(2)) · · · (±xn,π(n)) .

Where the ± in the above formula depend on whether i < π(i) or i > π(i). Now suppose there is a π ∈ Pn
with π ∈ E that has an odd cycle. Suppose we look at the same permutation with the order of that cycle

reversed, denote π′. Reversing the order of a cycle can always be done with an even number of transpositions,

i.e. reversing the order of a cycle does not a�ect its sign, and thus sgn(π′) = sgn(π). However, reversing

the order of the permutation reverses each of the ± values in the product and therefore reverses the sign of

the term. Consequently, we have argued that for every π ∈ E with an odd cycle there is unique π′ ∈ E that

gives the same term with the sign reversed. Consequently, all the terms for odd cycles cancel and we have

det (T (G)) =
∑

π∈Pn,π∈E,Gπhas only even cycles

(−1)sgn(π)(±x1,π(1))(±x2,π(2)) · · · (±xn,π(n)) .

Consequently, if det(T (G)) 6= 0 then G has a permutation corresponding to a perfect matching and G has a

perfect matching. On the other hand, if G has a perfect matching, denote it {v1, v2}, {v3, v4}, ... then if we

look at the permutation where for all odd i, π(vi) = vi+1 and for all even i, π(vi) = vi−1 then the variables

in the term will be (−x2v1v2)(−xv3,v4)
2 · · · . As this is the only occurence of this term det(T (G)) 6= 0.

Consequently, again by Schwartz Zippel, picking a random assignment of the xij lets us test if G has a perfect

matching in the time needed to compute a determinant. In the next lecture we show how to use this to

obtain polynomial time algorithms for computing perfect matchings.

3Note that the rule used to determine the sign of xij does not matter so long as it appears once with each sign.

	Perfect Matchings
	From Perfect Matchings to Maximum Matching
	Cut Characterizations of Matchings

	Perfect Matchings in Bipartite Graphs (Algebraically)
	Perfect Matchings in General Graphs

